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a b s t r a c t

Recently airborne Light Detection And Ranging (LiDAR) has emerged as a highly accurate remote sensing
modality to be used in operational scale forest inventories. Inventories conducted with the help of LiDAR
are most often model-based, i.e. they use variables derived from LiDAR point clouds as the predictive
variables that are to be calibrated using field plots. The measurement of the necessary field plots is a
time-consuming and statistically sensitive process. Because of this, current practice often presumes hun-
dreds of plots to be collected. But since these plots are only used to calibrate regression models, it should
be possible to minimize the number of plots needed by carefully selecting the plots to be measured. In the
current study, we compare several systematic and random methods for calibration plot selection, with
the specific aim that they be used in LiDAR based regression models for forest parameters, especially
above-ground biomass. The primary criteria compared are based on both spatial representativity as well
as on their coverage of the variability of the forest features measured. In the former case, it is important
also to take into account spatial auto-correlation between the plots. The results indicate that choosing the
plots in a way that ensures ample coverage of both spatial and feature space variability improves the per-
formance of the corresponding models, and that adequate coverage of the variability in the feature space
is the most important condition that should be met by the set of plots collected.

! 2012 Elsevier B.V. All rights reserved.

1. Introduction

Prediction of forest variables, with associated uncertainty, at a
fine spatial resolution over large domains is used to inform forest
management and policy decisions, further environmental research,
and to serve as base data for a range of environmental monitoring
initiatives. For instance, several multinational initiatives include
specific requirements for spatially explicit estimates of forest bio-
mass – a proxy for carbon – with specific levels of accuracy. Two
notable initiatives include the U.N. Framework Convention on Cli-
mate Change Kyoto Protocol and, more recently, the REDD+ pro-
gram mandated by the Climate Conference in Durban in 2011.
Additionally, several National Forest Inventory (NFI) programs
have adapted their inventory and analysis to better support report-
ing and research on carbon budgets via forest biomass estimation.

Multisource forest inventory methods couple georeferenced
forest inventory field plot measurements with remotely sensed
data, most commonly in the form of remotely sensed imagery or
more recently Light Detection And Ranging (LiDAR), to improve
large- and small-scale prediction of forest variables. Many studies,

some of which are noted below, have detailed such methods to im-
prove prediction and mapping of forest biomass and other impor-
tant economic and ecological forest variables.

While remote sensing based methods, such as the ones listed
above, are cost-effective and accurate, they require a representa-
tive field sample for calibrating their parameters. Such methods
are most often model-based, or Bayesian, in character. Among
these methods, recently especially LiDAR has gained in popularity,
to the extent that some countries, including Finland (Maltamo
et al., 2011b), have chosen it as the only method to be used in med-
ium-scale operational forest inventory. By medium-scale we mean
the case where inventories are produced at stand level over a total
forest area of at most a million hectares in size. In national scale
inventory, over several millions of hectares of forestland, satellite
image based methods are still the best choice, because of the low
cost and temporally high frequency of satellite imagery. The main
disadvantage of using satellite images is a precision and spatial res-
olution that are both significantly weaker than when LiDAR is used.
In this article, our focus is on medium-scale forest inventory.

Motivated by a need to produce cost effective assessments of
forest variables using a combination of field measurements and re-
motely sensed data, we explore approaches to minimizing the
number of forest inventory plots visited while maximizing predic-
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tive performance and minimizing bias. We focus on characterizing
the impact of sampling intensity and design on measures of forest
variables along with estimates of uncertainty for arbitrarily de-
fined areas of interest.

A variety of multisource forest inventory methods are common
in the literature, including non-parametric approaches such as k-
nearest neighbor and Random Forest (see, e.g., McRoberts (2012),
and references there in) and parametric regression and geostatisti-
cal approaches. Geostatistical approaches such as kriging and cok-
riging (see, e.g., Cressie (1993), Chilés and Delfiner (1999), Banerjee
et al. (2004)) have been used extensively to improve prediction and
quantify uncertainty (see, e.g., Hudak et al. (2002), Finley et al.
(2008a), Finley et al. (2008b), Finley et al. (2009), Finley et al.
(2011)).

All multisource methods attempt to improve inference by
exploiting the relationship between the forest variable of interest,
referred to as the response variable, and the remotely sensed vari-
ables, referred to as the covariates. If this relationship is strong and
the postulated model is able to capitalize on this relationship, then
substantial gains in efficiency can be realized. Here, we define effi-
ciency in terms of the model’s predictive accuracy and precision gi-
ven a fixed number of forest inventory plot observations. We also
note that efficiency is a function of the number of observations,
their information content, and the postulated model.

When considering sampling designs for use in multisource
model-based inventories, a common objective is to approximate
complete coverage of the domain by placing plots on a regular grid,
or randomly within regular polygons that tesselate the area of
interest, see, e.g., Paciomik and Rypdal (2003) and McRoberts
et al. (2005). Additionally, some prior knowledge about the forest
characteristics, such as forest type, forest land use history, or infor-
mation estimated from remotely sensed data, can be used to im-
prove the design (Means et al., 1999; Brown, 2002; Patenaude
et al., 2004). However, these approaches do not explicitly consider
the relationship between the forest response variable and remotely
sensed covariates used in the postulated model, and therefore miss
an opportunity to gain efficiency.

Several studies have found a strong correlation between remo-
tely sensed covariates, in particular those derived from LiDAR, and
forest response variables, see, e.g., Næsset (1997), Means et al.
(1999), Rooker Jensen et al. (2006), Magnussen et al. (2010). In
such cases, the variability and spatial distribution of the forest vari-
ables can be reasonably well estimated using the LiDAR covariates,
even in the absence of field sampling. If these same relationships
exist in new inventory areas, then the readily available LiDAR
covariates can be used as auxiliary data, in conjunction with the
postulated model, to guide selection of inventory plot locations
to maximize information gain and hence efficiency.

The relationship between sample design and model-based
inference in multisource inventory settings has been partially ex-
plored in several recent studies. Junttila et al. (2008) considered
the effect of LiDAR covariates and varying intensities of inventory
plots for predicting a host of forest variables using ordinary
least-squares and Sparse Bayesian regression models. Hawbaker
et al. (2009) assessed two sampling designs for informing a regres-
sion model used for predicting biomass and other forest variables.
Here, field data were drawn from a simple random sample and
stratified sample that was informed using mean and standard devi-
ation of LiDAR canopy height estimates. In a similar study, that
used a k-NN method to predict forest stand parameters, Maltamo
et al. (2011a) considered several plot selection strategies including
random selection, random selection within pre-stratification
according to forest type, and selection of plots based on properties
of the LiDAR data given as a priori information.

These studies showed that prediction error increases as the
number of field sample plots diminishes; however, given auxiliary

data in the form of LiDAR variables, and field sample plot selection
criteria via stratification, good results can be achieved even with
only a few dozen field sample plots. These studies did not explicitly
leverage the postulated model to guide plot selection; rather, the
plot selection utility function was somewhat arbitrary and disjoint
from the modeling phase. Therefore, some questions remain. First,
can we realize gains in efficiency when the postulated model and
LiDAR data are both considered in the plot selection? Second, can
we use a priori knowledge about a possible relationship between
LiDAR covariates and the forest response variable to preferentially
select plot locations to sample? The answer to the first question is
likely yes in most settings, however, preferential selection of inven-
tory plots can also result in biased prediction. Therefore, for this re-
sult to be useful in application, we need to be able to say
something about the amount of bias in the subsequent prediction.
Third, are the answers to the first and second questions consistent
across sites?

In this study, three different selection criteria based on LiDAR
data and/or plot location are considered for inventory plot selection
at three distinct study sites. Our interest is in maintaining the
robustness of prediction even under a severe reduction in the num-
ber of plots measured. In particular, we consider gains in efficiency
versus introduction of bias. To simulate a realistic multisource
inventoryof anew study site, all the selection criteria use only covar-
iates estimated from the sites’ LiDAR data, i.e., the criteria do not use
information from forest variables measured at the study sites.

The remainder of the paper is organized as follows: Section 2
details the proposed selection criteria and candidate models. Sec-
tion 3 describes the study sites, associated data, and analysis. Anal-
ysis results and discussion is offered in Section 4. Finally, a
summary with an indication toward future work are provided in
Section 5.

2. Methods

Let us assume the forested domain can be partitioned into N
fixed area plots that comprise the inventory sample frame. A set
of variables, potentially estimated from remotely sensed data, is
available for each plot and stored in a p ! 1 vector xi along with
an intercept of constant value 1, where i indexes the plots
i = 1, . . . , N. These variables, which will serve as the covariates in
the subsequent regression model, are collected into a N ! p matrix
X, i.e., x0

i is the ith row of X. In addition to the covariates, the cen-
troid coordinates, i.e., easting and northing, for each plot are
known and stored in a 2 ! 1 vector si, where again i indexes the
plot. Similar to the covariates, these coordinates are organized into
a N ! 2 matrix S. For the current setting, only the plot covariates
and centroid coordinates are known. In the subsequent develop-
ment we refer to these data as the auxiliary data.

From the N plots available in the domain, n 6 N plots are se-
lected into the sample using a criterion defined in Section 2.1. To
keep track of which plots are selected into the sample, we define
a design vector f of length n that holds the sample plots’ index in
the sample frame, i.e., each element fj, j = 1, . . . , n, is a distinct plot
index that references a plot in the sample frame, fj 2 {1, . . . N}.

Given a design vector, f, the n sample plots are visited and cor-
responding forest variable measurements are recorded. These mea-
surements are stored in a n ! 1 vector yf, which serves as the
response vector in the subsequent regression. The design vector
is also used to select rows in matrices X and S to form yf’s corre-
sponding n ! p Xf and n ! 2 Sf matrices. The regression model is
written as follows

yf ¼ Xfbþwf þ !; ð1Þ

where b is a p ! 1 vector of regression coefficients,wf is a n ! 1 vec-
tor of spatial random effects, and ! is a n ! 1 vector of residuals. The
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spatial random effects arise from a Multivariate Normal (MVN),
MVN(0,Cf(g)), where the (i,j)th element of the n ! n covariance ma-
trix Cf(g) is r2q(si, sj; /) and g = {r2, /}. Here we choose to work
with the Exponential correlation function, such that q(si, sj;/
) = exp(&/ksi & sjk), / is considered the spatial decay parameter,
and ksi & sjk is the euclidean distance between plot locations si
and sj. Other valid spatial correlation functions could be considered,
see, e.g., Cressie (1993). The vector ! follows a MVN(0, s2In) with
scalar variance s2 and n ! n identity matrix In, i.e., independent
and identically distributed residuals.

To reduce the dimension of the parameter space, we integrate
over the spatial random effects and work with the marginalized
likelihood of (1), yf 'MVN(Xfb,Rf(h)) where Rf(h) = Cf(g) + s2In
and h = {s2, r2, /}. The estimates for h, denoted ĥ, were obtained
using an efficient Markov chain Monte Carlo (MCMC) algorithm
under a Bayesian formulation, see, Finley and Banerjee (2012) for
additional details.

As described in Section 1, we would like to base comparisons on
efficiency defined in terms of predictive accuracy and precision.
Hence, we are interested in making predictions for those plots in
the sample frame that are not indexed in f. We denote this N & n
complement set index vector as v and refer to it as the verification
set. Similar to our use of f, the verification index vector is used to
subset X and S to form the (N & n) ! p Xv and (N & n) ! 2 Sv
matrices.

Following from (1), the predictive distribution for the jth plot
indexed in v is ŷj ' N ly;j; s

2
y;j

! "
, where

ly;j ¼ xjb̂þ cjðĝÞ0Rf ðĥÞ&1ðyf & Xf b̂Þ; ð2Þ

s2y;j ¼ ŝ2 & cjðĝÞ0Rf ðĥÞ&1cjðĝÞ þ Dx0j X 0
fRf ðĥÞ&1Xf

! "&1
Dxj; ð3Þ

xj is the jth row of matrix Xv ; cjðĝÞ is the n ! 1 vector of covariances
between plot location sj and locations Sf, b̂ is the vector of estimated
regression coefficients, and Dxj ¼ xj & cjðĝÞ0Rf ðĥÞ&1Xf . This result is
also known as the universal Kriging variance, see e.g. Christensen
(1990). One can obtain b̂ from the MCMC algorithm noted previ-

ously, or, given ĥ, compute b̂ ¼ X0
fRf ðĥÞ&1Xf

! "&1
X0

fRf ðĥÞ&1yf .

2.1. Design criteria

There are several strategies for choosing an optimal design vec-
tor f⁄. Here, we consider two general approaches. The first, referred
to as a space filling design, attempts to sample uniformly across a
feature space. In our setting, the feature space can be defined using
geographic coordinates or a coordinate system derived from the
covariates. The second considers qualities of the postulated model
(1) and attempts to minimize some function of prediction error.
Both approaches can be used to define an objective function u(f).
Then, given a fixed sample size n, the optimal design vector is
found by solving the optimization (minimization) problem f⁄ = arg-
minfu(f). A solution to this problem requires a potentially compu-
tationally intensive search among specification of f.

2.1.1. Space filling design
The Maximin design, e.g., detailed in Morris and Mitchell (1995)

and Trosset (1999), is a space filling design that attempts to cover a
feature space as uniformly as possible given a fixed number of
points, i.e., sample size in our case. The Maximin utility function
maximizes the minimal distance between plots, or equivalently
minimizes its negative or inverse value.

Consider some generic feature space that is associated with the
sample frame and defined by a N ! q matrix Z. Here q refers to the
arbitrary number of variables in Z. The squared Euclidean distance

between row i and j of Z is dði; jÞ ¼
Pq

k¼1ðZi;k & Zj;kÞ2. Then, given
this definition, the Maximin design utility function is

um;Zðf Þ ¼
1

mindði; jÞ
; i; j 2 f and i–j; ð4Þ

where m refers fo ‘‘Maximin’’, and i and j are two distinct plots in-
cluded in f. If Z = S, minimization of um,S(f) will produce a f⁄ that
identifies sample plots that cover the domain as uniformly as pos-
sible. For example, if S defines a dense grid over the domain, then
minimization of this utility function results in an approximately
regular grid of n plots over the domain. Alternatively, one could
set Z = X, then minimization of um,X(f) will produce a f⁄ that identi-
fies sample plots that cover the covariate space as uniformly as
possible.

2.1.2. Designs minimizing linear prediction error variance
Instead of specifying a sampling design using only information

in the auxiliary data feature space, it might be more fruitful to con-
sider the predictive distribution of the postulated model. In fact,
this seems more natural, or direct, given that our objective is to im-
prove predictive accuracy and precision. The challenge is that only
the auxiliary data are known a priori and without response variable
measurements the model parameters cannot be estimated and
hence the predictive distribution cannot be fully specified. How-
ever, as detailed below, given some ‘‘reasonable’’ estimate of h

some gains in efficiency might be realized.
Classical optimal designs for linear models are discussed, e.g. in

Silvey (1980) and Atkinson and Donev (1992), where optimality re-
fers to minimizing model parameters’ error variance–covariance or
maximizing some measure of information gain. In our setting,
interest is in specifying a design that leads to optimal prediction
of a forest response variable, therefore we seek the design that
minimizes the prediction error variance. The prediction error var-
iance for (1), given in (3), depends on the auxiliary data and param-
eters associated with the spatial random effects and residuals, not
on the response variable measurements. Thus, given n, X, S, and
estimates of h, the postulated model can help inform plot selection
into the sample – before response measurements are collected.

It turns out that the first component in (3), the s2 parameter of-
ten referred to as the nugget or pure error variance, affects the pre-
diction error variance only as a constant and can therefore be
ignored when comparing among different designs. Thus, we might
consider the prediction error utility function

ulin;hðf Þ ¼ ðu1 þ u2Þ=ðN & nÞ; ð5Þ

where

u1 ¼ &traceðcvðgÞ0Rf ðhÞ&1cvðgÞÞ; ð6Þ

u2 ¼ trace Dx0v X 0
fRf ðhÞ&1Xf

! "&1
Dxv

# $
ð7Þ

and Dxv = xv & cv(g)0Rf(h)&1Xf. This utility function is referred to as
the Mean Universal Kriging variance in Brus and Heuvelink (2007).
Collectively, u1 and u2 consider the distribution of sample plots in
geographic space and covariate feature space. The utility function
also accounts for the strength of spatial dependence, and hence at-
tempts to reduce the amount of redundant information resulting
from samples located too close together in geographic space. Specif-
ically, a f⁄ that minimizes the utility function’s first component, u1,
maximizes the geographic distance between sample plots and min-
imizes their distance to prediction plots indexed in v. The strength
of the spatial correlation, controlled by /, dictates the influence of
u1 in the utility function. The utility function’s second component,
u2, also contributes to plot separation in geographic space, given
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the strength of the spatial correlation, but also attempts to select
samples on or near the convex hull of the covariate space.

To more clearly understand the contribution of the utility func-
tion’s components, it is helpful to consider the case where the spa-
tial correlation among verification plot measurements is assumed
to be zero, i.e., cv(g) = 0.

Here, the prediction variance utility function becomes

trace Xv X0
fR

&1
f Xf

! "&1
X 0
v

# $
; ð8Þ

and results in a f⁄ that minimizes b’s covariance matrix,
Rb ¼ X0

fR
&1
f Xf

! "&1
, weighted by the verification set’s covariates.

When each covariate column in X is scaled to the range [&1, 1],
the plots with covariate values close to {&1, 1} are selected into
the sample first. Thus the linear model is defined using the plots
with extreme values of covariates. Hengl et al. (2003) apply this
aspatial approach to determine sampling designs for soil surveys.

If spatial dependence among plot measurements is negligible,
i.e., 1//? 0, the model covariance matrix becomes diagonal,
Rf = (s2 + r2)In. In this case the constant scale term (s2 + r2) can
be ignored (it does not influence comparison among utility func-
tion values) and the utility function (5) is reduced to

trace Xv X 0
f Xf

! "&1
X0
v

# $
; ð9Þ

and only the covariate distribution influences the selection of f⁄.
The design vector obtained using (9) is known to be efficient

and optimal only when the relationship between the response
and covariates can be well approximated by the linear model. If
the relationship between the covatiates and response is nonlinear,
the design can lead to biased results. The addition of spatial depen-
dence in (5) is an attempt to minimize this potential bias, while
still realizing some of the advantages of covering the covariate fea-
ture space.

2.2. Simulated annealing

Given a utility function, the search for the optimal design vector
f⁄ requires an intensive search among specifications of f. This
search becomes computationally onerous for even a moderately
sized sample frame and sample size, e.g., N = 100 and n = 25 is
N
n

# $
¼ 75;287;520 different f’s must be evaluated. An alternative

to the brute force search is to use an efficient search algorithm
such as simulated annealing, see, e.g., Zhou (2008) and Fang and
Wiens (2000).

The simulated annealing algorithm used in our study is as fol-
lows. Start with the current design vector, fcurr that, for the first
iteration of the algorithm, comprises n randomly chosen plots
which serve as initial values. A new candidate design vector is
formed by setting fcand equal to fcurr then replacing one index in
fcand with an index selected randomly from those N & n plots
remaining in the sample frame. Then fcand is accepted if the utility
function value u(fcand) is smaller than u(fcurr), or exp(&(u(fcand) -
& u(fcurr))/T) > a, where T is a cooling temperature specified by
the user and a is a random variate drawn from a Uniform distribu-
tion with support from 0 to 1. If both conditions are not satisfied,
then fcand is rejected. When fcand is accepted, it replaces fcurr, other-
wise, a new candidate design vector is formed from fcurr as de-
scribed above. These steps continue until fcurr does not change
for some prespecified number of iterations. For our study this
threshold was 30,000 and the cooling temperature was reduced
by 0.9 every 100 iterations. To ensure a stable solution to f⁄ was
found, this algorithm was run multiple times using different initial
design vectors and random number generator seeds.

3. Case studies

3.1. Forest inventory data

The sampling design criteria detailed in Section 2.1 were as-
sessed using three forest inventory datasets that are part of the
multiagency U.S. North American Carbon Program. Each dataset
comprises point-referenced measures of above ground forest bio-
mass and covariates derived from discrete LiDAR data. The datasets
come from the Fraser Experimental Forest (FEF) located in central
Colorado near the town of Fraser, Marcell Experimental Forest
(MEF) located in northern Minnesota, and Niwot Long Term Eco-
logical Research Site (NIWOT) on the front range of the Rocky
Mountains, near the town of Nederland, Colorado.

Tree species at FEF consist primarily of Abies lasiocarpa and Picea
engelmannii at higher elevations and Pinus contorta at lower eleva-
tions. Climate at FEF is characterized by cold and relatively long
winters, with mean annual temperature and precipitation of 0 "C
and 737 mm, respectively. MEF consists of mixed forests that in-
clude both upland forests and peat lands. Upland forests are gener-
ally dominated by Populus tremuloides and grandidentata, but
contain substantial components of Betula papyrifera, Pinus resinosa,
Pinus strobus, and Pinus banksiana. Lowland tree species include
Larix laricina, Picea mariana, Fraxinus nigra, and Thuja occidentalis.
Climate at MEF is sub-humid continental, with mean annual pre-
cipitation of 785 mm, mean annual temperature of 3 "C and air
temperature extremes of &46 "C and 38 "C. Tree species in NIWOT
include primarily a mix of Abies lasiocarpa, Picea engelmannii and
Pinus contorta with minor components of Pinus flexilis and Populus
tremuloides. Mean annual temperature and precipitation are 4 "C
and 800 mm, respectively.

Field data at each site were collected using methods similar to
the Forest Inventory and Analysis cluster plot design (Bechtold
and Patterson, 2005). The cluster configuration consists of four
8–10 m radius plots (depending on the site) with one at the cluster
center and the other three positioned 35 m away from the center at
0", 120", and 240". Additional single plots were distributed
throughout the site. FEF, MEF, and NIWOT contained 60, 99, and
62 plots respectively. Within each plot, tree diameter at breast
height and height measurements for both live and dead trees were
taken and used in species specific allometric models to estimate
above ground biomass (AGB) including stem, branch, and foliage.
Additional details about field measurements and allometric equa-
tions used for biomass estimation are available in Bradford et al.
(2010). Plot level AGB in Mg/ha was calculated by summing indi-
vidual tree estimates for each plot. The variability of AGB values

0

200

400

FEF MEF NIWOT

Fig. 1. Boxplots of AGB of distribution in given test sites. Median, 25th and 75th
percentiles and outliers are shown.
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in given test sites is shown in Fig. 1. Prior to analysis, each plot’s
AGB measurements were square root transformed to better
approximate a normal distribution which is more likely to produce
good predictions in terms of the given normality assumptions of
the model residual. This variable, AeGB, serves as the response in
(1).

LiDAR point return density profiles were constructed for each
plot by summing the number of returns within 1 m height bins
over the given plot. LiDAR returns within the 0–1 m height class
were removed to limit the influence of low vegetation and local
topographic features. To correct for variation in the number of re-
turns, due to flight path overlap and laser scan angle, each profile
was normalized by dividing each bin count by the maximum bin
count.

LiDAR profiles were partitioned into 10th, 20th, 25th, 30th,
40th, 50th, 60th, 70th, 75th, 80th, 90th, 95th and 100th height per-
centiles, and stored in a N ! 13 matrix Z where rows correspond to
plots and columns holds percentile heights. Several studies, some
noted in Section 1, have shown that variables in Z are useful for
explaining the variability in AGB. However, due to high collinearity
among the columns, this entire matrix cannot be used as the de-
sign matrix in (1). Rather, we used a singular value decomposition
(SVD) to extract the maximum information from Z using the fewest
number of variables.

Prior to decomposition, each column of Z was scaled to have a
mean of zero and unit variance. Then we decomposed the N !m
matrix Z = UKV0, where the orthogonal matrices U and V are
N ! N and m !m, respectively. The columns of U and V are often
called the left and right singular vectors. The diagonal values of
N !m matrix K contain the singular values (square root of eigen-
values of Z0Z and ZZ0) in decreasing order corresponding to the col-
umns in matrices U and V, other components in the matrix are
zero. In practice, a subset of columns from UK (i.e., principal com-
ponent scores) can be used as variables in regression analysis – re-
ferred to as principal components regression (Chatterjee and Hadi,
2006). Thus the columns of UK represent the new, orthogonal, can-
didate set of covariates. Those components that correspond to the
eigenvalues which explain 90%, of the data are used for X. That is,
the eigenvectors corresponding to the p largest eigenvalues, such
that 90% of the variability of the data is explained, were used as
covariates in the subsequent analyses. To meet the 90% criteria 6,
7, and 9 eigenvectors were needed for FEF, MEF, and NIWOT,
respectively. Finally, to facilitate interpretation, the p columns of
each sites’ Xwere scaled to range from [&1, 1]. Both the 90% of var-
iance explained and scaling bounds were chosen somewhat arbi-
trarily, but are reasonable for our subsequent analyses.

3.2. Analysis and assessment

Using the data detailed in Section 3.1 and design criteria in Sec-
tion 2.1 we considered the following six designs: Maximin based
on geographic coordinates, um,S(f) labeled MMS; Maximin based
on feature space coordinates defined by X, um,X(f), labeled MMX,
and; minimization of linear prediction variance, ulin,h(f) with
h = {s2, r2, /} equal to {0, 1, & ln(0.05)/(r⁄dmax))}, where r = {0.1,
0.5, 0.9} and dmax is the maximum Euclidean distance between
any two plots in the sites. Recall, we are working with the Expo-
nential correlation function; therefore, r determines the effective
spatial range, i.e., 10, 50, and 90 percent of dmax. Therefore, the four
linear prediction variance criteria are labeled LPV10, LPV50, and
LPV90 for 10, 50, and 90 percent of dmax, respectively. We also con-
sidered the aspatial case where ulin,h(f) is equal to (9), and label this
design LPV0 where the subscript reminds us that residual spatial
correlation is assumed to be zero.

Note, for LPV10, LPV50, and LPV90, the values of / in hwill change
according to the site’s dmax. For example, say dmax = 100, then

ulin,h(f) will be evaluated using / values of 0.3, 0.06, and 0.03 which
correspond to effective spatial ranges of 10, 50, and 90 distance
units, respectively. In this way, we can explore the influence of
residual spatial dependence on the sample selection.

For each of the six designs, we vary the number of possible n
from 10 to 50, 90, and 60, for FEF, MEF, and NIWOT, respectively.
In practice, N would be the number of fixed area plots that com-
prise the a priori unobserved inventory population. However, to as-
sess the design criteria, we treat the observed plots as our sample
frame.

As noted in Section 1, the different designs are assessed based
on predictive ability and bias. To do this we perform a Leave-
One-Out (LOO) cross-validation. For a given site, the LOO steps
are as follows: (1) holdout the ith plot from the sample frame;
(2) determine the optimal sample f from the sample frame of
N & 1 plots according to the given design and n; (3) estimate the
parameters in (1) using the data from the sample and predict
AeGB for the ith holdout plot; (4) repeat steps 1–3 for all i in
1, . . . , N. This procedure results in N predicted values of AeGB, i.e.,
ŷ ¼ ðŷ1; ŷ2; . . . ; ŷNÞ0 obtained using the posterior predictive distri-
bution defined in Section 2, that can be compared to their corre-
sponding observed values. Additionally, we obtain a baseline
prediction of AeGB using the above LOO procedure but use the en-
tire sample frame in step 2, i.e., setting n = N & 1 uses all available
information to estimate the model parameters and subsequent
prediction of the given holdout plot. Predicted AeGB values result-
ing from the design criteria and baseline LOO cross-validations
were assessed using the relative root mean square error RMSE%,

RMSE% ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

ðŷi & yiÞ
2=N

vuut

!y
ð10Þ

and relative estimated bias, Bias%,

Bias% ¼

XN

i¼1

ðŷi & yiÞ=N

!y
; ð11Þ

where !y ¼
PN

i¼1yi=N. Field plots have been collected with a system-
atic or random sampling design. Therefore the difference between
the mean value of a forest variable measured from sample plots
and that measured from the corresponding model forecasts can
be used to estimate model bias, down to respective sampling error.

4. Results and discussion

Application of the different design criteria results in selection of
different plots into the sample. Visualizing the distribution of sam-
ple plots in a given feature space is helpful for understanding how
the criteria sample from the sample frame. For example, Figs. 2 and
3 illustrate FEF’s n = 12 sample solutions. Here, Fig. 2a and d shows
the distribution of samples in geographic and covariate space,
respectively, using MMS. Give the nearly even distribution in
Sub-Fig. 2a versus the seemingly random distribution in 2d, it is
clear MMS seeks to cover geographic space. In contrast, MMX at-
tempts to cover covariate space, Sub-Fig. 2e, opposed to geographic
space Sub-Fig. 2b. Note, for brevity we are only displaying the
space defined by the first two covariate columns of X, which corre-
spond to the two largest singular values. The linear predictive var-
iance designs do something quite different than the Maximin
designs. When the effective spatial range is assumed to be zero
or negligible, i.e., no or little spatial dependence among the model
residuals, the LPV criteria select samples on and near the covariate
space convex hull. This can be seen in the LPV0 solution illustrated
in Sub-Fig. 2f.
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Designs LPV10, LPV50, and LPV90 assume an increasing range of
residual spatial dependence. Despite the disparity in assumed
effective spatial range for FEF, i.e., 10% (448 m), 50% (2240 m),
90% (4030 m), all of these designs result in relatively even coverage
in both geographic and covariate space as illustrated in Fig. 3.
Although not presented, results for MEF and NIWOT show similar
sample plot patterns for the design criteria.

Although not apparent in these figures, increasing the assumed
spatial range should result in a more over-dispersed coverage in
geographic feature space versus covariate feature space. To under-
stand this better, consider minimizing the first component in the
utility function, i.e., (6), which affects the plot selection in such a
manner that plots located close to each other in geographic space
are not included, while also preferentially selecting plots in prox-
imity to plots in v, i.e., presumably those locations where we will
want to make a prediction. To see the effect of minimizing the sec-
ond component, (7), it is useful to consider its parts: the first,
X 0

fRf ðhÞ&1Xf

! "
, affects the plot selection in a manner similar to

LPV0, with the addition that plots proximate to each other in geo-
graphic space are not included in the sample if their covariate val-
ues are similar. The influence of this part depends on the
covariance parameters. The second, rows inDxv, appear in the form

of squared values in the utility function, so that their optimal value
is zero. The minimum is reached when covariate values of each
verification plot j 2 v can be estimated as the weighted average
of the covariate values of the sample plots located within the effec-
tive spatial range from the verification plot, xj ’ cj(g)0Rf(h)&1Xf. If
weak spatial correlation is assumed, the second component of
the utility function, (7), leads to designs close to that of LPV0. With
stronger spatial correlation, the covariate values in the verification
plots are explained more and more with covariate values of their
nearest spatial neighbors. The resulting design, summation of the
two components, Eq. (5), is a combination of these features.

Alternative plot layout designs had only minimal impact on pre-
dictive performance in the three forested landscapes examined
here. The predictive performance of the design criteria compared
to that of the baseline is provided in Figs. 4–6 for FEF, MEF, and NI-
WOT, respectively. For all sites, the Bias% and RMSE% results are
similar among different designs – converging toward the baseline
as n increases.

These results provide insight about how sampling intensity
influences bias and RMSE of resulting predictions. For FEF and
MEF, a Bias% within ±3% of the baseline is consistently obtained be-
yond n ( 25 and n ( 35, respectfully, for all designs except MMS

Fig. 2. Distribution of Fraser Experimental Forest (FEF) sample frame, plots denoted with circle symbols, in geographic and covariate feature space, top and bottom rows
respectively. Square symbols indicate those plots selected into the n = 12 sample using MMS, MMX, and LPV0 design criteria.
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Fig. 3. Distribution of Fraser Experimental Forest (FEF) sample frame, plots denoted with circle symbols, in geographic and covariate feature space, top and bottom rows
respectively. Square symbols indicate those plots selected into the n = 12 sample using LPV10, LPV50, and LPV90 design criteria.

Fig. 4. Fraser Experimental Forest (FEF) design criteria and baseline (solid horizontal line) prediction Bias% (left) and RMSE% (right) for sample size n.
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and LPV0. For NIWOT, all designs achieve a Bias% within ±3% of the
baseline beyond n ( 35. The LPV0 Bias% for FEF and MEF deviates
substantially from the other designs and baseline. This design pref-
erentially selects sample plots at the extremes of the covariates’
ranges which can result in a response vector yf ) that is not repre-
sentative of the verification plots’ response values and hence
strongly biased prediction. This bias can be exacerbated as p in-
creases and when the correlation between covariates and the re-
sponse variable is strong. In contrast, the LPV10, LPV50, LPV90

designs provide a more representative sample and hence lower
predictive bias by forcing some degree of coverage in both geo-
graphic and covariate space, as illustrated in Fig. 3. Visualization
of the design LPV50 with n = 20 for each test site is given in
Figs. 7–9.

Across all three sites, the MMX, LPV10, LPV50, LPV90 designs
maintain low Bias% and RMSE% beyond a sample size of (35 com-
pared to the other designs. For NIWOT, MMX shows slightly higher
RMSE% compared to that achieved by LPV10, LPV50, LPV90, suggest-
ing a spatial structure in AGB that, when incorporated into sample
plot design, may enhance predictions. Because we do not know h a
priori, the ulin,h(f) designs must use some reasonable estimate of s2,

r2, and /. Here we considered a range of values for /, all of which
resulted in comparable predictive performance. But how different
would our results be if the true value of h was used? As an explor-
atory analysis, we used all data to fit site-specific non-spatial or-
dinary least squares (OLS) regression models that included the
LiDAR covariates. Then we fit semivariograms to the models’ resid-
uals (plots not shown). The FEF and MEF semivariograms revealed
no spatial structure, i.e., the LiDAR covariates explain the majority
of the spatial pattern in AGB. Hence, we would not expect much
difference between the results of a baseline model with or without
spatial random effects. This too explains why MMX performs as
well as LPV10, LPV50, LPV90. On the other hand, the semivariogram
for NIWOT showed moderately strong spatial structure, i.e., the Li-
DAR covariates do not explain all of the spatial pattern in AGB and
therefore gains in predictive performance should be realized by
adding spatial random effects. These gains can be seen in Sub-
Fig. 6b, which includes the baseline RMSE% achieved using the
OLS (18.3%) and regression model with spatial random effects
(14.6%). The need for spatial random effects in the regression mod-
el for NIWOT also helps to explain why LPV10, LPV50, LPV90 produce
marginally lower RMSE% compared to that of MMX. Lastly, Fig. 6

Fig. 5. Marcell Experimental Forest (MEF) design criteria and baseline (solid horizontal line) prediction Bias% (left) and RMSE% (right) for sample size n.

Fig. 6. Niwot Long Term Ecological Research Site (NIWOT) design criteria and baseline (solid horizontal line) prediction Bias% (left) and RMSE% (right) for sample size n.
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includes an additional line, labeled LVPĥ that uses the ĥ estimated
from NIWOT’s semivariogram using all the 62 plots. Importantly,
this line does not deviate much from the those of LPV10, LPV50,
LPV90, which suggests that the design is robust to moderate
misspecification of h.

5. Summary

Given the case study results, we again consider our initial ques-
tions. First, can we realize gains in efficiency when the postulated
model is considered in the plot selection? Here, a linear regression
with spatial random effects served as our postulated model. Lack
of residual spatial dependence, i.e., after considering the LiDAR
covariates, among the plot measurements reduced the impact of
the spatial random effects at the FEF and MEF sites. However, given
the residual spatial pattern at NIWOT, the addition of the random
effects did influence the design and hence improved prediction –
albeit to a small degree. Regardless, of the presence of residual spa-
tial dependence, those LPV designs that forced coverage in both
covariate and geographic feature space yielded designs that re-
sulted in better predictive performance than designs that sought
coverage in only geographic space or at the extremes of the covar-
iate space, i.e., MMS and LPV0 respectively. In fact, our results
showed that LPV0 and, to a lesser degree, MMS can result in large
prediction bias relative to other designs and should probabily not
be used in practice.

Second, can we use a priori knowledge about a possible relationship
between LiDAR covariates and the forest response variable to preferen-
tially select plot locations to sample? In this study, the a priori infor-
mation comes in several forms. For instance, based on results from
previous studies, we assumed there was at least a moderately
strong relationship between AGB and the set of LiDAR covariates
that explained a large portion of variability in the LiDAR signal –
likely covariates associated with canopy height and other biophys-
ical canopy characteristics. Also, based on these prior studies, we
assumed the relationship between AGB and LiDAR covariates could
be cast as a linear model. Finally, the geographic extent of the dif-
ferent sites helped, to some degree, in determining reasonable sup-
port for the spatial range parameter /. In practice, we could garner

additional information from modeling exercises conducted at sim-
ilar sites. This additional information could include specific LiDAR
covariates, e.g., those corresponding to specific crown and/or stand
characteristics, distribution of the regression parameter’s that
could inform prior distributions at new sites, and better initial esti-
mates of h. However, our results suggest that the LPV design solu-
tion is fairly robust to misspecification of h.

Third, are the answers to the first and second questions consistent
across sites? As noted previously, presence of residual spatial
dependence does influence the design. Given our postulated mod-
el, stronger residual spatial dependence should result in greater

Fig. 7. 20 Field sample plots (shown with black squares) selected with the LPV50

design in test site FEF. On the left, the field sample measurements, on the right, the
absolute errors of the estimates. The size of the circle represents the amount of plot
level AGB or error, in the same scale.

Fig. 8. 20 Field sample plots (shown with black squares) selected with the LPV50

design in test site MEF. On the top, the field sample measurements, on the bottom,
the absolute errors of the estimates. The size of the circle represents the amount of
plot level AGB or error, in the same scale.
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gains in predictive performance. Also, the results suggest that MMX

and those LPV0 designs that acknowledge some degree of residual
spatial dependence do perform similarly across the three sites.
Across sites, use of the MMX or the spatial LPV designs allow the
number of plots to be reduced by approximately 20 with marginal
impact on RMSE or bias.

From a practical point-of-view in conducting medium-scale for-
est inventory campaigns that use airborne LiDAR, it can be con-
cluded that just about forty field plots can be enough to calibrate
an accurate and precise linear regression model for estimating
above-ground biomass, based on LiDAR covariates. Selecting these
forty plots so that they span very well the variability of forest fea-

tures present in the target forest, and adequately well also the spa-
tial extent of the forest, appears sufficient for robust estimation
results. Several plot selection criteria suitable for this purpose were
identified and compared. The strength of the conclusions obtained
is limited to some extent by the smallish number of sample plots
available from our case study sites, and this should therefore be ta-
ken as a caveat to their validity.
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